<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE DECISION</td>
<td>3</td>
</tr>
<tr>
<td>THE INVESTMENT</td>
<td>4</td>
</tr>
<tr>
<td>SITE SELECTION</td>
<td>4</td>
</tr>
<tr>
<td>PRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>DISEASES AND TREATMENT</td>
<td>6</td>
</tr>
<tr>
<td>HARVESTING</td>
<td>7</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>8</td>
</tr>
</tbody>
</table>
Guide for Prospective Catfish Farmers

The Decision

Catfish farming is much more than just stocking fish in a pond, feeding, and then reaping the profits. It is a very expensive and risky form of agriculture. Intensive catfish culture requires almost 24-hour a day management, and unless you are willing to provide this type of management, you should look at another enterprise.

To help you determine if intensive catfish farming is feasible for you in your particular situation, a checklist is provided below. It doesn’t cover all of the possibilities, but it does list most of the important considerations. Answering “yes” to all or most of the questions does not guarantee success, just as answering “no” does not mean failure.

Management

Do you already have suitable ponds or a pond site? Yes No
Do you have most of the equipment (tractors, pumps, storage building, etc.) needed?
Do you have the necessary financial resources (about $3000/acre investment and $2500/acre annual production cost) needed?
Have you made an estimate of investment costs and annual cost and return?
Have you estimated the impact of changes in fish prices and feed costs on projected income?
Will current interest rates and interest costs on investment and operating capital permit a reasonable profit?
Will the expected profit provide an adequate return for your labor, management, and risk?
Is catfish farming the best alternative for the land you intend to use?
Can you afford to forego income until you sell your first crop (usually 15-24 months after starting)?
Have you looked at record systems available and picked one best suited to your situation?
Can you afford to absorb occasional losses?
Are you willing to devote the time and effort required?

Marketing

Do you know of an established market for your fish?
Is there a market for your fish at the time of year you plan to sell them?

Will you have harvesting and transport equipment, or do you have a suitable arrangement for harvesting your fish?
Will you be able to harvest fish year round?
Do you have an alternative marketing strategy?

Physical Factors

Will the soil hold water?
Is the topography of the land suitable for pond construction?
Is there adequate ground water close enough to the surface for catfish farming?
Is the water quality suitable for fish farming?
Is the pond area protected from flooding?
Are the drains in existing ponds adequate for rapid draining?
Can you prevent wild fish from entering the pond?
Is there daily access to the ponds, regardless of weather, for feeding, treating, and harvesting?
Is the pond bottom suitable for harvesting (smooth and stump-free)?
Will someone live close enough to the pond to allow frequent observation and necessary management?

Production

Are good quality feeds available at competitive prices?
Is there a source of supply for drugs and chemicals?
Are fingerlings available at competitive prices?
Can you make or purchase needed aeration equipment?
Is dependable labor available?
Is a dependable diagnostic service available?
Do you have adequate storage facilities for feed?
Are you aware of the government agencies that can provide you with educational and technical assistance?

Risks

Are you prepared to handle these problems:
Poor water quality?
Diseases?
Pesticide contamination?
Poachers and vandals?
Low fish prices and high feed costs?
Personal stress resulting from financial loss?
THE INVESTMENT

The amount of investment required for catfish farming varies and depends on many factors. The following is a list of costs common to most catfish farms. Determine the approximate costs for your situation:

Capital Costs

1. land
2. pond construction (about 6.2 cubic yds. per linear foot of levee for a 16 foot top), gravel, vegetation
3. drains (pipe, valve, fittings)
4. water supply
5. building (storage and service)
6. aeration equipment (paddlewheel, relift pumps, etc.)
7. boat and motor
8. trucks
9. fish hauling tanks and agitators
10. feeding equipment, feed storage bins
11. tractors
12. mowers
13. oxygen testing equipment
14. other water quality testing equipment
15. seines, storage reels, crane
16. dip nets
17. waders and boots
18. miscellaneous equipment
19. taxes and insurance
20. interest

Operating Costs

1. Feed

<table>
<thead>
<tr>
<th>Feed</th>
<th>Cost per lb of feed (cost per ton in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion</td>
<td>$200</td>
</tr>
<tr>
<td>1.5:1</td>
<td>15.0</td>
</tr>
<tr>
<td>1.6:1</td>
<td>16.0</td>
</tr>
<tr>
<td>1.7:1</td>
<td>17.0</td>
</tr>
<tr>
<td>1.8:1</td>
<td>18.0</td>
</tr>
<tr>
<td>1.9:1</td>
<td>19.0</td>
</tr>
<tr>
<td>2.0:1</td>
<td>20.0</td>
</tr>
</tbody>
</table>

2. fingerlings
3. electricity
4. fuel (diesel and gasoline)
5. maintenance and repairs
6. harvest labor
7. transportation
8. daily labor
9. chemicals and drugs
10. telephone
11. miscellaneous
12. interest on operating capital

The best information on the economics of producing catfish are two publications available from your county agent:

Cash Flows Associated with Farm-Raised Catfish Production, Mississippi State University, Agricultural Economics Technical Publication No. 46, Giachelli, and Waldrop.

SITE SELECTION

The selection of the site is a critical decision. Look for these characteristics in a potential site:

1. Soil must hold water.
2. Flat land requires moving about 1,000-1,200 yards of dirt per acre. Rolling land requires more dirt be moved and is, therefore, more expensive.
3. Lands classified as "wetlands" cannot be cleared by law. Wetlands are defined as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas."
4. Site must be suitable for draining.
5. Land is subject to flooding.
6. Pesticide residues are not present in soil.
7. Run-off is not from agricultural fields.
8. Adequate water is available to fill pond within 10-12 days. (See Table 2).

<table>
<thead>
<tr>
<th>Volume in Acre Feet</th>
<th>100 gpm</th>
<th>54.3</th>
<th>271.5</th>
<th>543.7</th>
<th>3802</th>
<th>(158)***</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 gpm</td>
<td>10.9</td>
<td>54.3</td>
<td>108.6</td>
<td>760</td>
<td>316</td>
<td>(158)***</td>
</tr>
<tr>
<td>1,000 gpm</td>
<td>5.4</td>
<td>27.0</td>
<td>254.3</td>
<td>380</td>
<td>150</td>
<td>(79)***</td>
</tr>
<tr>
<td>2,000 gpm</td>
<td>2.7</td>
<td>13.5</td>
<td>27.2</td>
<td>150</td>
<td>79</td>
<td>(79)***</td>
</tr>
<tr>
<td>3,000 gpm</td>
<td>1.8</td>
<td>5.0</td>
<td>18.1</td>
<td>90</td>
<td>45.3</td>
<td>(79)***</td>
</tr>
</tbody>
</table>

* 1 acre foot = 325,850 gallons = 1 surface acre that is 1 foot deep.
** The number of acre feet of water in a pond with 17.5 surface acres with an average depth of 4 feet.
*** Number of days required to pump that volume of water.

9. If surface water is used, the watershed should be adequate for filling pond during normal rainfall.
Pond Construction

1. Size - 17.5 water acres on 20 land acres; large ponds are more difficult to manage, and smaller ponds are more expensive to construct.
2. Slope bottom to drain by gravity flow (0.1-2 ft. per 100 ft.).
3. The drain should be large enough so pond can be drained within 7-10 days. Drain outlet must be at least 2 feet above surface of water in drainage ditch to prevent wild fish from entering pond.
4. Levee width should be at least 16 feet with gravel.
5. Slope should be 3:1 with proper compaction.
6. Freeboard (the height of the levee above the water level) should not exceed 2 feet nor be less than 1 foot.
7. Depth should be at least 3 feet at the toe of slope at shallow end and should not exceed 6 feet at toe of slope at the deep end.
8. Shape of pond is determined by topography. A square 20-acre pond requires 1,867 feet of levee. A rectangular 20-acre pond that is 660 x 1,320 feet requires 1,980 feet of levee, a difference of 113 feet.

Before stocking the pond, weigh and sample-count the fish so you can determine the number actually being stocked.
To determine number actually stocked, weigh out a sample of fish (1 to 10 lbs.) and count. Then calculate the total number of fish stocked with this formula:

\[
\text{Number of fish stocked} = \frac{\text{number of fish in sample} \times \text{total weight in fish}}{\text{weight of fish in sample} \times \text{lb stocked}}
\]

Where:
- Number of fish in sample = 266
- Weight of fish sample = 5 lb
- Total weight of fish = 85.5 lb

Thus, number stocked = \(\frac{266 \times 85.5}{5} = 4,548\) fish

To determine the weight of 1,000 fish, weigh and count sample of fish; then:

\[
\text{Weight of 1,000 fish} = \frac{\text{wt. of fish in sample in lb} \times 1000}{\text{number of fish in sample}}
\]

5. Stock the pond as soon as water is in the pond and catfish are available.
6. When topping the pond, restock as soon after harvest as possible with one 5-8 inch fish for each fish harvested. Count a weighed sample of harvested fish, then calculate number harvested using the following formula:

\[
\text{Number harvested} = \frac{\text{number in sample} \times \text{total weight harvested}}{\text{weight of sample in pounds}}
\]

Example:
- Number in sample = 80 fish
- Weight of sample = 100 lb
- Total weight harvested = 10,000 lb

thus, number of fish harvested = \(\frac{80 \times 10,000}{100} = 8,000\) fish

Therefore, since 8,000 fish (weighing a total of 10,000 lb) were harvested, you need to restock 8,000 fingerlings.
7. When all fish are harvested from a pond, restock the pond as soon as it is 1/4 to 1/2 full and stocker-size catfish are available.

Feeding - remember "No Feed, No Gain"

1. Feed size - Match feed size to fish size.
2. Quality of feed - use complete feed with vitamins added. Above 65°F (18.3°C) use floating feed. Use sinking feed when water temperatures are lower.
3. Feeding rates - Several factors that control the amount of food fish will eat are: temperature, water quality (oxygen, pH, ammonia, etc.), food size, palatability or taste of food, frequency of feeding, the way the fish are fed, location of feeding sites, and whether floating or sinking pellets are used.
As a rule of thumb, feed 2 to 3 percent of the weight of the fish in pond daily when water temperatures are 65°F (18.3°C) or higher. Feed 1 percent of the body weight every other day when water temperatures are lower than 60°F (15.5°C). When water temperature is above 90°F feed intake is usually reduced.

Adjust amount fed every two weeks by obtaining a sample of fish from the pond, weighing the sample, and counting the number in the sample. Then use the following formula to calculate the weight of food to feed per acre daily for the next two weeks:

\[
\text{Weight of feed needed daily per acre} = \frac{\text{wt. of sample} \times \text{no. of fish} \times \text{no. of fish}}{\text{no. of fish in sample}}
\]

Example:
- Weight of sample = 20 lb
- Number of fish in sample = 100
- Number stocked per acre = 4,500 fish
- % to feed daily = 3%

\[
\text{Weight of feed needed daily per acre} = \frac{20 \times 4,500 \times 0.03}{100} = 27 \text{ lb feed needed/acre/day}
\]

Limit feeding to a maximum of 100 lb. per acre per day. Exceeding this rate can result in severe water quality problems that can be difficult to manage.

Tables 4-7 are guides to show the amount of feed based on average expected gains at stocking rates of 1,000-5- or 7-inch fingerlings per acre. If you stocked 2,000 catfish per acre, multiply the amount to feed daily per acre by 2. If the pond was stocked with 3,500 per acre, multiply the amount to feed daily per acre by 3.5. Remember these tables are guides only and the amount you feed daily depends on your particular situation and all factors which influence daily feed consumption by catfish.

Winter feeding as a management practice cannot be overstressed.

Feed once daily in the morning as soon as water quality permits. According to recent research, afternoon feeding results in excess fat rather than protein in the form of muscle tissue.

Record keeping is a must for good management. You can develop your own system or use the forms in the appendix.

Water Quality

1. One key to successful catfish farming is an adequate supply of suitable water. Here are some water sources:
 - Wells are most desirable because of year-round availability and uniform quality; they are also free of fish that can transmit disease.
 - Reservoirs or streams will work but can act as a source of wild fish, disease, and chemical contamination.

- Run-off is least desirable and not satisfactory for intensive culture since it is not available when needed. Can only refill pond during rainy season, thus restricting harvest time.

2. Be prepared to check water for:
 - Oxygen - daily (see "For Fish Farmers" No. 81-3 available from your county agent)
 - Ammonia - every 7-10 days
 - pH - when ammonia is present
 - Nitrites - every 2-3 days
 - Chlorides - when nitrites are present
 - Total Alkalinity - before using copper sulfate

See "For Fish Farmers" No. 82-1 for testing procedures for ammonia, nitrite and chloride; available from your county agent.

DISEASES AND TREATMENT

1. Observe fish daily to see the first sign of a disease. Signs that fish may be getting sick fall into two main categories:
 - Behavior - The way fish act, particularly a reduction in feeding activity, will often indicate the beginning of a disease.
 - Physical appearance - Check any abnormalities to see if a disease is starting.

2. Anything that prevents stress will reduce the chance of an infectious disease.
 - Oxygen - minimum of 4 ppm, maximum not to exceed 150 percent saturation for 4-6 hours.
 - Temperature - 33°F (0.6°C) to 120°F (48.9°C); don't exceed a rapid 10°F (5.6°C) increase or decrease.
 - pH - 4.5 to 10.5; best range is 6.5 to 9.0.
 - Nutrients - Feed must contain all essential nutrients.
 - Proper handling.
 - Prevent toxins, natural or introduced, from entering pond.
 - Maintain good water quality by preventing buildup of nitrite, ammonia, etc.

3. Before treating fish for disease there are several things you need to know:
 - Prognosis.
 - Feasibility of treating in facility where fish are located.
 - Economics of treating.
 - Does loss rate warrant treatment?

4. Before deciding on treatment to use, you must know these things:
 - Water and how it will affect the treatment.
 - Fish and how they will respond to the treatment.
 - Chemical and its effectiveness in a particular situation.
 - Disease and how it will respond to the treatment selected.
5. Calculation of Treatment Levels - see Information Sheet 673 Calculation of Treatment Levels for Control of Fish Diseases and Aquatic Weeds available from your county agent.

What To Do If Fish Get Sick
1. Submit sample of sick fish and water sample to the Extension Wildlife and Fisheries Department Fish Disease Laboratory at Mississippi State University (telephone 601/325-3174) or at Stoneville (601/686-9311) for a quick and accurate diagnosis. Select and ship samples according to instructions on Information Sheet 667 Selection andShipping Samples To Determine Cause of Fish Kill available from your county agent.

2. If you suspect a fish kill is caused by a pesticide, contact the Division of Plant Industries at Mississippi State University (telephone 601/325-5713) in addition to collecting samples as indicated on Information Sheet 667.

Off-Flavor
The only way to correct flavor problems is to put affected fish into clean water for 3 to 10 days.

Control of Undesirable Fish
There are two ways to control undesirable fish:

1. Complete eradication of all fish either by
 - Drain and dry ponds.
 - Rotenone - Use 3 pounds of 5% rotenone powder or 6 pints of 2.5% emulsifiable rotenone per acre foot of water. Use only when water temperature is above 70°F (21.1°C).

2. Selective Removal of Scale Fish
 - Fintrol (Antimycin A) - Legal to use. Used at 1/5 the recommended rate is satisfactory and economical. Use early in the morning when pH is less than 8.5 to reduce cost of treating.

Aquatic Weed Control
- Have problem weed identified by county agent.
- Calculate pond area and volume to be treated.
- Choose most economical and effective control method.
- Follow label instructions.

HARVESTING
You must decide whether to do your own harvesting or hire a custom harvester. If you do your own harvesting, the equipment and labor required depend on the number, size, and shape of your ponds.

- Basic equipment required: hydraulic-powered seine reel mounted on a 2-wheel trailer; 3 feet of seine for every 2 feet of pond width; should be 10 feet deep and have floats and mud line; 14 foot john boat with seine bracket on front and powered with a 10-25 h.p. motor; boom truck with hoist; in-line scales, and fish basket; 2 tractors with hydraulic system for pulling seine; cutting seines or live cars; dip nets, waders, gloves, etc.; emergency aeration equipment.

- Stretch the seine across one end and pull it by the tractors toward the end with the inflow pipe. It is necessary for two men to get in the water and move with the seine, using a foot to keep the mud line on the bottom.

- After fish are concentrated at one end, load the fish in the basket, hoist it up to the live-haul truck, record weight, and then put in hauling tank containing water.

If you decide to use custom harvesting, here are some things you need to know:

- Cost varies but is usually 3-5 cents per pound.
- Contact custom harvester well ahead of anticipated harvest for scheduling purposes and to determine cost.
- Be sure you have a market and fish are on-flavor.
- Find out what equipment you are expected to provide.
APPENDIX

Table 4. Feeding guide based on average expected gains with a feed conversion of 1.75 at a stocking rate of 1,000 5-inch fingerlings per acre.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Water Temp°F</th>
<th>Col. 1 Wt of 1,000 Fish at Beginning</th>
<th>Col. 2 % of Body Wt Fed Daily</th>
<th>Col. 3 Wt of Food Fed/Acre/Day</th>
<th>Col. 4 Conversion</th>
<th>Col. 5 Gain in Lb Per Day</th>
<th>Col. 6 No. of Feeding Days</th>
<th>Col. 7 Gain in Lb Per Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15-31</td>
<td>55-60</td>
<td>34</td>
<td>1.0</td>
<td>0.3</td>
<td>1.75</td>
<td>0.2</td>
<td>17</td>
<td>3.4</td>
</tr>
<tr>
<td>4/1-15</td>
<td>60-65</td>
<td>37.4</td>
<td>1.5</td>
<td>0.6</td>
<td>1.75</td>
<td>0.3</td>
<td>15</td>
<td>4.5</td>
</tr>
<tr>
<td>4/16-30</td>
<td>65-70</td>
<td>41.9</td>
<td>2.0</td>
<td>0.8</td>
<td>1.75</td>
<td>0.5</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>5/1-15</td>
<td>70-75</td>
<td>49.4</td>
<td>2.5</td>
<td>1.2</td>
<td>1.75</td>
<td>0.7</td>
<td>15</td>
<td>10.5</td>
</tr>
<tr>
<td>5/16-31</td>
<td>75-80</td>
<td>59.9</td>
<td>3.0</td>
<td>1.8</td>
<td>1.75</td>
<td>1.0</td>
<td>16</td>
<td>16.0</td>
</tr>
<tr>
<td>6/1-15</td>
<td>80-85</td>
<td>75.9</td>
<td>3.0</td>
<td>2.3</td>
<td>1.75</td>
<td>1.3</td>
<td>15</td>
<td>19.5</td>
</tr>
<tr>
<td>6/16-30</td>
<td>85-90</td>
<td>95.4</td>
<td>3.0</td>
<td>2.9</td>
<td>1.75</td>
<td>1.7</td>
<td>15</td>
<td>25.5</td>
</tr>
<tr>
<td>7/1-15</td>
<td>90-95</td>
<td>120.9</td>
<td>3.0</td>
<td>3.6</td>
<td>1.75</td>
<td>2.1</td>
<td>15</td>
<td>30.9</td>
</tr>
<tr>
<td>7/16-31</td>
<td>95-100</td>
<td>151.8</td>
<td>3.0</td>
<td>4.6</td>
<td>1.75</td>
<td>2.6</td>
<td>16</td>
<td>41.6</td>
</tr>
<tr>
<td>8/1-15</td>
<td>90-100</td>
<td>193.4</td>
<td>3.0</td>
<td>5.8</td>
<td>1.75</td>
<td>3.3</td>
<td>15</td>
<td>49.5</td>
</tr>
<tr>
<td>8/16-30</td>
<td>95-105</td>
<td>242.9</td>
<td>3.0</td>
<td>7.3</td>
<td>1.75</td>
<td>4.2</td>
<td>16</td>
<td>67.2</td>
</tr>
<tr>
<td>9/1-15</td>
<td>85-90</td>
<td>310.1</td>
<td>3.0</td>
<td>9.3</td>
<td>1.75</td>
<td>5.3</td>
<td>15</td>
<td>79.5</td>
</tr>
<tr>
<td>9/16-30</td>
<td>75-85</td>
<td>389.6</td>
<td>3.0</td>
<td>11.7</td>
<td>1.75</td>
<td>6.7</td>
<td>15</td>
<td>100.5</td>
</tr>
<tr>
<td>10/1-15</td>
<td>85-90</td>
<td>490.1</td>
<td>2.5</td>
<td>12.3</td>
<td>1.75</td>
<td>7.0</td>
<td>15</td>
<td>105.0</td>
</tr>
<tr>
<td>10/16-31</td>
<td>60-65</td>
<td>595.1</td>
<td>2.0</td>
<td>11.9</td>
<td>1.75</td>
<td>6.8</td>
<td>16</td>
<td>108.8</td>
</tr>
<tr>
<td>11/1-15</td>
<td>55-60</td>
<td>703.9</td>
<td>1.5</td>
<td>10.6</td>
<td>1.75</td>
<td>6.1</td>
<td>15</td>
<td>91.5</td>
</tr>
</tbody>
</table>

Total Expected Weight of Fish = 795.4 lb
Total Weight of Food Fed = 1331.2 lb

Method of calculating projected growth of fish during year:
(1) Column 1 x Column 2 / 100 = Column 3
(2) Column 3 / Column 4 = Column 5
(3) Column 5 x Column 6 = Column 7
(4) Column 7 + Column 1 = Column 1 next time period

Table 5. Feeding guide based on average expected gains with a feed conversion of 1.5 at a stocking rate of 1,000 5-inch fingerlings per acre.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Water Temp°F</th>
<th>Col. 1 Wt of 1,000 Fish at Beginning</th>
<th>Col. 2 % of Body Wt Fed Daily</th>
<th>Col. 3 Wt of Food Fed/Acre/Day</th>
<th>Col. 4 Conversion</th>
<th>Col. 5 Gain in Lb Per Day</th>
<th>Col. 6 No. of Feeding Days</th>
<th>Col. 7 Gain in Lb Per Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15-31</td>
<td>55-60</td>
<td>34.0</td>
<td>1.0</td>
<td>0.3</td>
<td>1.5</td>
<td>0.2</td>
<td>17</td>
<td>3.4</td>
</tr>
<tr>
<td>4/1-15</td>
<td>60-65</td>
<td>37.4</td>
<td>1.5</td>
<td>0.6</td>
<td>1.5</td>
<td>0.4</td>
<td>15</td>
<td>6.0</td>
</tr>
<tr>
<td>4/16-30</td>
<td>65-70</td>
<td>43.4</td>
<td>2.0</td>
<td>0.9</td>
<td>1.5</td>
<td>0.6</td>
<td>15</td>
<td>9.0</td>
</tr>
<tr>
<td>5/1-15</td>
<td>70-75</td>
<td>52.4</td>
<td>2.5</td>
<td>1.3</td>
<td>1.5</td>
<td>0.9</td>
<td>15</td>
<td>13.5</td>
</tr>
<tr>
<td>5/16-31</td>
<td>75-80</td>
<td>65.9</td>
<td>3.0</td>
<td>2.0</td>
<td>1.5</td>
<td>1.3</td>
<td>16</td>
<td>20.8</td>
</tr>
<tr>
<td>6/1-15</td>
<td>80-85</td>
<td>86.7</td>
<td>3.0</td>
<td>2.6</td>
<td>1.5</td>
<td>1.7</td>
<td>15</td>
<td>25.5</td>
</tr>
<tr>
<td>6/16-30</td>
<td>85-90</td>
<td>112.2</td>
<td>3.0</td>
<td>3.4</td>
<td>1.5</td>
<td>2.3</td>
<td>15</td>
<td>34.5</td>
</tr>
<tr>
<td>7/1-15</td>
<td>90-95</td>
<td>146.7</td>
<td>3.0</td>
<td>4.4</td>
<td>1.5</td>
<td>2.9</td>
<td>15</td>
<td>43.5</td>
</tr>
<tr>
<td>7/16-31</td>
<td>95-100</td>
<td>190.2</td>
<td>3.0</td>
<td>5.7</td>
<td>1.5</td>
<td>3.8</td>
<td>16</td>
<td>60.8</td>
</tr>
<tr>
<td>8/1-15</td>
<td>90-100</td>
<td>251.0</td>
<td>3.0</td>
<td>7.5</td>
<td>1.5</td>
<td>5.0</td>
<td>15</td>
<td>75.0</td>
</tr>
<tr>
<td>8/16-31</td>
<td>95-105</td>
<td>326.0</td>
<td>3.0</td>
<td>9.8</td>
<td>1.5</td>
<td>6.5</td>
<td>16</td>
<td>104.0</td>
</tr>
<tr>
<td>9/1-15</td>
<td>85-90</td>
<td>430.0</td>
<td>3.0</td>
<td>12.9</td>
<td>1.5</td>
<td>8.6</td>
<td>15</td>
<td>129.0</td>
</tr>
<tr>
<td>9/16-30</td>
<td>75-85</td>
<td>599.0</td>
<td>3.0</td>
<td>16.8</td>
<td>1.5</td>
<td>11.2</td>
<td>15</td>
<td>168.0</td>
</tr>
<tr>
<td>10/1-15</td>
<td>65-75</td>
<td>727.0</td>
<td>2.5</td>
<td>18.2</td>
<td>1.5</td>
<td>12.1</td>
<td>15</td>
<td>181.5</td>
</tr>
<tr>
<td>10/16-31</td>
<td>60-65</td>
<td>908.5</td>
<td>2.0</td>
<td>18.2</td>
<td>1.5</td>
<td>12.1</td>
<td>16</td>
<td>193.6</td>
</tr>
<tr>
<td>11/1-15</td>
<td>55-60</td>
<td>1102.1</td>
<td>1.5</td>
<td>16.5</td>
<td>1.5</td>
<td>11.0</td>
<td>15</td>
<td>165.0</td>
</tr>
</tbody>
</table>

Total Expected Weight of Fish = 1267.1 lb
Total Weight of Food Fed = 1852.8 lb

Method of calculating projected growth of fish during year:
(1) Column 1 x Column 2 / 100 = Column 3
(2) Column 3 / Column 4 = Column 5
(3) Column 5 x Column 6 = Column 7
(4) Column 7 + Column 1 = Column 1 next time period
Table 6. Feeding guide based on average expected gains with a feed conversion of 1.5 at a stocking rate of 1,000 7-inch fingerlings per acre.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Water Temp. °F</th>
<th>Col. 1 Wt of 1,000 Fish at Beginning</th>
<th>Col. 2 % of Body Wt Fed Daily</th>
<th>Col. 3 Wt of Food Fed/Acre/Day 1,000 Fish</th>
<th>Col. 4 Conversion</th>
<th>Col. 5 Gain in Lb Per Day</th>
<th>Col. 6 No. of Feeding Days</th>
<th>Col. 7 Gain in Lb Per Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15-31</td>
<td>55-60</td>
<td>94.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.5</td>
<td>0.6</td>
<td>17</td>
<td>10.2</td>
</tr>
<tr>
<td>4/1-15</td>
<td>60-65</td>
<td>104.2</td>
<td>1.5</td>
<td>1.6</td>
<td>1.5</td>
<td>1.1</td>
<td>15</td>
<td>16.5</td>
</tr>
<tr>
<td>4/16-30</td>
<td>65-70</td>
<td>120.7</td>
<td>2.0</td>
<td>2.4</td>
<td>1.5</td>
<td>1.6</td>
<td>15</td>
<td>24.0</td>
</tr>
<tr>
<td>5/1-15</td>
<td>70-75</td>
<td>144.7</td>
<td>2.5</td>
<td>3.6</td>
<td>1.5</td>
<td>2.4</td>
<td>15</td>
<td>36.0</td>
</tr>
<tr>
<td>5/16-31</td>
<td>75-80</td>
<td>180.7</td>
<td>3.0</td>
<td>5.4</td>
<td>1.5</td>
<td>3.6</td>
<td>16</td>
<td>57.6</td>
</tr>
<tr>
<td>6/1-15</td>
<td>80-85</td>
<td>238.3</td>
<td>3.0</td>
<td>7.1</td>
<td>1.5</td>
<td>4.7</td>
<td>15</td>
<td>79.5</td>
</tr>
<tr>
<td>6/16-30</td>
<td>85-90</td>
<td>308.8</td>
<td>3.0</td>
<td>9.3</td>
<td>1.5</td>
<td>6.2</td>
<td>15</td>
<td>93.0</td>
</tr>
<tr>
<td>7/1-15</td>
<td>90-95</td>
<td>401.8</td>
<td>3.0</td>
<td>12.1</td>
<td>1.5</td>
<td>8.1</td>
<td>15</td>
<td>121.5</td>
</tr>
<tr>
<td>7/16-31</td>
<td>95-100</td>
<td>523.3</td>
<td>3.0</td>
<td>15.7</td>
<td>1.5</td>
<td>10.5</td>
<td>16</td>
<td>168.0</td>
</tr>
<tr>
<td>8/1-15</td>
<td>90-100</td>
<td>691.3</td>
<td>3.0</td>
<td>20.0</td>
<td>1.5</td>
<td>13.3</td>
<td>15</td>
<td>199.5</td>
</tr>
<tr>
<td>8/16-31</td>
<td>95-100</td>
<td>890.8</td>
<td>2.5</td>
<td>20.0</td>
<td>1.5</td>
<td>13.3</td>
<td>16</td>
<td>212.8</td>
</tr>
<tr>
<td>9/1-15</td>
<td>85-90</td>
<td>1103.6</td>
<td>3.0</td>
<td>20.0</td>
<td>1.5</td>
<td>13.3</td>
<td>15</td>
<td>199.5</td>
</tr>
<tr>
<td>9/16-30</td>
<td>75-85</td>
<td>1303.1</td>
<td>1.5</td>
<td>20.0</td>
<td>1.5</td>
<td>13.3</td>
<td>15</td>
<td>199.5</td>
</tr>
</tbody>
</table>

Total Expected Weight of Fish = 1502.6 lb
Total Weight of Food Fed = 2114.4 lb

Method of calculating projected growth of fish during year:
1. Column 1 x Column 2 ÷ 100 = Column 3
2. Column 3 + Column 4 = Column 5
3. Column 5 x Column 6 = Column 7
4. Column 7 + Column 1 = Column 1 next time period

Table 7. Feeding guide based on average expected gains with a feed conversion of 1.75 at a stocking rate of 1,000 7-inch fingerlings per acre.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Water Temp. °F</th>
<th>Col. 1 Wt of 1,000 Fish at Beginning</th>
<th>Col. 2 % of Body Wt Fed Daily</th>
<th>Col. 3 Wt of Food Fed/Acre/Day 1,000 Fish</th>
<th>Col. 4 Conversion</th>
<th>Col. 5 Gain in Lb Per Day</th>
<th>Col. 6 No. of Feeding Days</th>
<th>Col. 7 Gain in Lb Per Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/15-31</td>
<td>55-60</td>
<td>94.0</td>
<td>1.0</td>
<td>0.9</td>
<td>1.75</td>
<td>0.5</td>
<td>17</td>
<td>4.4</td>
</tr>
<tr>
<td>4/1-15</td>
<td>60-65</td>
<td>98.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.75</td>
<td>0.9</td>
<td>15</td>
<td>13.5</td>
</tr>
<tr>
<td>4/16-30</td>
<td>65-70</td>
<td>111.9</td>
<td>2.0</td>
<td>2.2</td>
<td>1.75</td>
<td>1.3</td>
<td>15</td>
<td>19.5</td>
</tr>
<tr>
<td>5/1-15</td>
<td>70-75</td>
<td>131.4</td>
<td>2.5</td>
<td>3.3</td>
<td>1.75</td>
<td>1.9</td>
<td>15</td>
<td>28.5</td>
</tr>
<tr>
<td>5/16-31</td>
<td>75-80</td>
<td>159.9</td>
<td>3.0</td>
<td>4.8</td>
<td>1.75</td>
<td>2.7</td>
<td>16</td>
<td>43.2</td>
</tr>
<tr>
<td>6/1-15</td>
<td>80-85</td>
<td>203.1</td>
<td>3.0</td>
<td>6.1</td>
<td>1.75</td>
<td>3.5</td>
<td>15</td>
<td>52.5</td>
</tr>
<tr>
<td>6/16-30</td>
<td>85-90</td>
<td>255.6</td>
<td>3.0</td>
<td>7.7</td>
<td>1.75</td>
<td>4.4</td>
<td>15</td>
<td>66.0</td>
</tr>
<tr>
<td>7/1-15</td>
<td>90-95</td>
<td>321.6</td>
<td>3.0</td>
<td>9.6</td>
<td>1.75</td>
<td>5.5</td>
<td>15</td>
<td>82.5</td>
</tr>
<tr>
<td>7/16-31</td>
<td>95-100</td>
<td>404.1</td>
<td>3.0</td>
<td>12.1</td>
<td>1.75</td>
<td>6.9</td>
<td>16</td>
<td>103.5</td>
</tr>
<tr>
<td>8/1-15</td>
<td>90-100</td>
<td>507.6</td>
<td>3.0</td>
<td>15.2</td>
<td>1.75</td>
<td>8.7</td>
<td>15</td>
<td>130.5</td>
</tr>
<tr>
<td>8/16-31</td>
<td>95-100</td>
<td>638.1</td>
<td>3.0</td>
<td>19.1</td>
<td>1.75</td>
<td>10.9</td>
<td>16</td>
<td>174.4</td>
</tr>
<tr>
<td>9/1-15</td>
<td>85-90</td>
<td>812.5</td>
<td>2.5</td>
<td>20.0</td>
<td>1.75</td>
<td>11.4</td>
<td>15</td>
<td>171.0</td>
</tr>
<tr>
<td>9/16-30</td>
<td>90-95</td>
<td>983.5</td>
<td>2.0</td>
<td>20.0</td>
<td>1.75</td>
<td>11.4</td>
<td>16</td>
<td>182.4</td>
</tr>
<tr>
<td>10/1-15</td>
<td>65-75</td>
<td>1154.5</td>
<td>1.7</td>
<td>20.0</td>
<td>1.75</td>
<td>11.4</td>
<td>15</td>
<td>171.0</td>
</tr>
<tr>
<td>10/16-31</td>
<td>60-65</td>
<td>1325.5</td>
<td>1.5</td>
<td>20.0</td>
<td>1.75</td>
<td>11.4</td>
<td>16</td>
<td>182.4</td>
</tr>
<tr>
<td>11/1-15</td>
<td>55-60</td>
<td>1507.9</td>
<td>1.3</td>
<td>20.0</td>
<td>1.75</td>
<td>11.4</td>
<td>15</td>
<td>171.0</td>
</tr>
</tbody>
</table>

Total Expected Weight of Fish = 1678.9 lb
Total Weight of Food Fed = 2795.3 lb

Method of calculating projected growth of fish during year:
1. Column 1 x Column 2 ÷ 100 = Column 3
2. Column 3 + Column 4 = Column 5
3. Column 5 x Column 6 = Column 7
4. Column 7 + Column 1 = Column 1 next time period
DAILY FEEDING RECORD

Week of __________ to __________

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEEKLY POND RECORD

Week of __________ to __________

<table>
<thead>
<tr>
<th>Pond #</th>
<th>Date</th>
<th>Weight of</th>
<th>Number of</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>_____</td>
<td>_________</td>
<td>__________</td>
<td>______</td>
</tr>
<tr>
<td>_______</td>
<td>_____</td>
<td>_________</td>
<td>__________</td>
<td>______</td>
</tr>
<tr>
<td>_______</td>
<td>_____</td>
<td>_________</td>
<td>__________</td>
<td>______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stocked</th>
<th>Fingerlings</th>
<th>Stocked</th>
<th>Fingerlings</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>_______</td>
<td>___________</td>
<td>_______</td>
<td>___________</td>
<td>______</td>
</tr>
<tr>
<td>_______</td>
<td>___________</td>
<td>_______</td>
<td>___________</td>
<td>______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Acre</th>
<th>Estimated Conversion Ratio:</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>______</td>
<td>______</td>
</tr>
</tbody>
</table>

Recap & Adjustment Calculations for Feed Fed

1. Beginning Feed Inventory = __________
2. Total Feed Purchased = __________
3. Ending Feed Inventory = __________
4. Feed Used $(1 + 2 - 3)$ = __________
5. Total Feed Fed From Pond Records = __________
6. Correction Factor $(4 ÷ 5)$ = __________

10
POND CONVERSION RATIO CALCULATIONS
Correction Factor — (C.F.) =

<table>
<thead>
<tr>
<th>Pond #</th>
<th>(1) Est. Lb Feed Fed (Form 103)</th>
<th>(2) Actual Lb Feed Fed (1) × (C.F.)</th>
<th>(3) Total Stocking Wt</th>
<th>(4) Total Lb Harvested (Form 103)</th>
<th>(5) Conversion Ratio 2/(4 − 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Distributed by Dr. Martin W. Brunson, Extension Leader, Wildlife and Fisheries, Mississippi State University. Written by Dr. Tom Wellborn, Jr., former leader, Extension Wildlife and Fisheries.

Mississippi State University does not discriminate on the basis of race, color, religion, national origin, sex, age, handicap, or veteran status.

Publication 1465
Extension Service of Mississippi State University, cooperating with U.S. Department of Agriculture. Published in furtherance of Acts of Congress, May 8 and June 30, 1914. HIRAM D. PALMERTREE, Director